Cette dernière variation n'affecte cependant pas fondamentalement la conformation du noyau pyrazole qui dans les deux cas se rapproche beaucoup plus de la forme (I) que de la forme (II) proposée par Ehrlich

(1960) pour la molécule de pyrazole.

Références

Cady, H. H. (1967). Acta Cryst. 23, 601.
Cady, H. H. \& Larson, A. C. (1965). Acta Cryst. 18, 485. Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem in Crystal Structure Analysis. Oxford: Pergamon Press.
Dickinson, C., Stewart, J. M. \& Holden, J. R. (1966). Acta Cryst. 21, 663.
Ehrlich, H. W. W. (1960). Acta Cryst. 13, 946.
Elguero, J., Jacquier, R. \& Tien Duc, H. C. N. (1966). Bull. Soc. chim. Fr. p. 3727.
Galigné, J. L. \& Falqueirettes, J. (1969). Acta Cryst. B25, 1637.
Gramaccioli, C. M., Destro, R. \& Simonetta, M. (1968). Acta Cryst. B24, 129.
Mak, T. C. W. \& Trotter, J. (1965). Acta Cryst. 18, 68.
Vijayan, M. \& Viswamitra, M. A. (1966). Acta Cryst. 21, 522.

Acta Cryst. (1970). B26, 386

Crystal Structure of Ettringite

By A. E. Moore
Cement \& Concrete Association Research \& Development Laboratories, Slough, Bucks., England
and H.F.W.Taylor
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, Scotland

(Received 17 March 1969)
Ettringite $\left(\mathrm{Ca}_{6}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3} .26 \mathrm{H}_{2} \mathrm{O}\right.$ approximately) has a structure based on columns of empirical composition $\left[\mathrm{Ca}_{3}\left[\mathrm{Al}(\mathrm{OH})_{6}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\right]^{3+}$, which run parallel to the c or needle axis; between them lie the sulphate ions and remaining water molecules. The structure analysis was made on crystals having the space group P31c; the hexagonal symmetry which has commonly been reported is attributed to disorder or twinning, in either case affecting mainly the intercolumn material. Within each column $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ octahedra alternate with triplets of calcium ions disposed around a triad axis; each calcium ion is 8 coordinated, by four hydroxyl ions and four water molecules. The columns are nearly cylindrical in cross-section, and their net positive charge is probably distributed among the hydrogen atoms of the water molecules of which their surfaces are composed. In the trigonal crystals studied, there is some disorder affecting the intercolumn water molecules, but none affecting the sulphate ions or the column material.

Introduction

Ettringite $\left(\mathrm{Ca}_{6}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 26 \mathrm{H}_{2} \mathrm{O}\right.$ approximately) occurs as a natural mineral, and is technically important because of its formation as a hydration product of Portland and super-sulphated cements, and its use, as Satin White, as a coating material for paper. The crystals are hexagonal prisms, often highly elongated. Bannister, Hey \& Bernal (1936) made the first singlecrystal X-ray study; they found a hexagonal unit-cell with $a=11 \cdot 26, c=21.48 \AA$, space-group $P 6_{3} / \mathrm{mmc}$, $Z=2$. From general crystal chemical reasoning and the observed behaviour on dehydration, they suggested that the structure was basea on chains of Ca^{2+} and $\mathrm{Al}(\mathrm{OH})_{6}^{3-}$ ions, between which were SO_{4}^{2-} ions and $\mathrm{H}_{2} \mathrm{O}$ molecules.

Welin (1956) determined the crystal structure of a related mineral, thaumasite

$$
\left[\mathrm{Ca}_{6} \mathrm{H}_{4}\left(\mathrm{SiO}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{CO}_{3}\right)_{2} \cdot 26 \mathrm{H}_{2} \mathrm{O} \text { approximately }\right]
$$

which he found to be based on chains of Ca^{2+} and SiO_{4}^{4-} ions with the remaining ions and $\mathrm{H}_{2} \mathrm{O}$ molecules in between. In contrast Bezjak \& Jelenić (1966) proposed a structure for ettringite, derived from an X-ray powder study, which contained layers of linked $\mathrm{Ca}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{O}$ polyhedra perpendicular to c . X-ray and other evidence indicates very close similarities between the two minerals and it appeared most unlikely that both these results could be correct. Preliminary results of X-ray structure determinations of ettringite, based on single-crystal evidence, were reported almost simultaneously and independently by Courtois, Dusau-
soy, Laffaille \& Protas (1968) and by Moore \& Taylor (1968). Both gave substantially similar results, which confirmed the general predictions of Bannister, Hey \& Bernal (1936) and agreed broadly with Welin's (1956) structure for thaumasite, but not with that of Bezjak \& Jelenić (1966) for ettringite. Moore \& Taylor showed that the true symmetry was trigonal, with space group $P 31 c$ or $P \overline{3} 1 c$; they attributed the hexagonal symmetry normally observed to twinning. Ettringite has systematic weaknesses of $h k i l$ reflexions with $l=2 n+1$ and of $h 0 h l$ reflexions with $l=4 n+2$. If these are ignored, a pseudo-cell is obtained with $c=10.74 \AA$ and spacegroup $P 6_{3} / \mathrm{mcm}$. Using this pseudo-cell a structure was proposed for ettringite which was as close io Welin's structure for thaumasite as the symmetry and composition allowed. This was refined in $h k i 0$ projection to give $R=0 \cdot 11$ and the $h k i 1,2$ and 3 layers (referred to the pseudo-cell) were found to give $R=0 \cdot 15,0 \cdot 13$ and $0 \cdot 16$ respectively. It was based on columns of composition $\left(\mathrm{Ca}_{3}\left[\mathrm{Al}(\mathrm{OH})_{6}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)^{3+}$ running parallel to \mathbf{c}, with SO_{4}^{2-} ions and $\mathrm{H}_{2} \mathrm{O}$ molecules in the channels between. The pseudo-structure corresponds to a situation [Fig. $1(a)$] in which each of the eight $\frac{1}{3}, \frac{2}{3}, n c / 4$ positions in these channels in the true cell has a 0.75 probability of being occupied by an SO_{4}^{2-} ion, and a 0.25 probability of being occupied by a $2 \mathrm{H}_{2} \mathrm{O}$ group. The SO_{4}^{2-} tetrahedra are randomly distributed between the 'point-up' and 'point-down' orientations. Where a position is occupied by $2 \mathrm{H}_{2} \mathrm{O}$, these are assumed to be distributed randomly among six sites corresponding to those available to the basal oxygen atoms of an SO_{4}^{2-} tetrahedron. These groups of $\mathrm{H}_{2} \mathrm{O}$ molecules will be referred to as 'water groups'. As sufficiently exact chemical analysis is impracticable (analyses in the literature give x ranging from 30 to 32 in the formula $3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{CaSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$) the mean number of
$\mathrm{H}_{2} \mathrm{O}$ molecules per water group may in fact be somewhat lower than the value of 2 given above.

Courtois et al. (1968) worked with a hexagonal crystal, for which they took the space group to be $P \overline{6} 2 c$, referred to the cell with $c=21.48 \AA$. So far as the columns are concerned, this is compatible with the pseudo-cell and space group used by Moore \& Taylor (1968), but with a different choice of origin. They refined the structure to $R=0 \cdot 142$. They showed that if this space group is assumed, there must either still be some disorder in the intercolumn material, or that alternatively the true space group must be $P 31 c$, the apparently hexagonal symmetry in this case arising from twinning. They mention that one crystal was found that had trigonal symmetry; this accords with the second hypothesis.

Experimental

The crystals were from a naturally occurring specimen from Scawt Hill, N. Ireland and labelled S. 203, which was kindly supplied by Professor C. E. Tilley, from the collection at the Department of Mineralogy and Petrology (University of Cambridge). Some of them proved on single-crystal X-ray examination to be hexagonal, but most of those examined were trigonal with spacegroup $P 31 c$ or $P \overline{3} 1 c$. The unit-cell parameters of all agreed substantially with those reported by Bannister, Hey \& Bernal (1936).

A single crystal was selected and turned into a cylinder parallel to the c axis, about 0.5 mm in length and 0.05 mm in diameter. This was done by 'sandblasting' the crystal with fine alumina powder while rotating it in a watchmaker's lathe. Intensity data were collected both photographically, using copper radiation, with a Nonius integrating Weissenberg camera

Fig. 1. Some possible arrangements of sulphate tetrahedra and water groups in accordance with space groups (a) $P 6_{3} / \mathrm{mcm}$ (for the pseudo-cell), (b) and (c) $P \overline{3} 1 c$, and (d) $P 31 c$, all for the true cell. Triangles denote sulphate tetrahedra, and horizontal lines water groups. Symmetry-independent tetrahedra or water groups are distinguished by numbers, and relative directions of twist, which are significant only within a given symmetry-related set, by rotation signs. Superimposed triangles and parallel pairs of horizontal lines denote respectively tetrahedra and water groups with halved occupancy. The directions of twist shown in (c) are those used in the trial structure for this space group, and those shown in (d) are the ones actually found in the final structure, in both cases as seen looking from + to - along the c axis.
with a double film technique, and also using a Hilger Automatic Linear Diffractometer, with molybdenum radiation. Results obtained with the diffractometer indicated that absorption corrections were negligible and none were applied. In general agreement was satisfactory; in the main the diffractometer data were used but in some cases, where the film data appeared more reliable, these were substituted. About 600 independent reflexions were observed and all were used; 120 non-observed reflexions not due to systematic absences were put in at an intensity half that of the weakest observed. Data were collected for 15 layers, ($l=0-10,12,14,16,18$) the inter-layer scaling being based entirely on the diffractometer measurements.
Initial computations for trial structures were performed on an Elliott 803 Computer mainly using programs kindly supplied by Daly, Stephens \& Wheatley (1963). Least-squares refinements were performed by use of Pawley's tape version of Busing, Martin \& Levy's (1962) ORFLS program, and Fourier analyses by making use of the X-ray 63 system, both on Atlas computers. The atomic scattering factors used were those for neutral atoms (International Tables for X-ray Crystallography, 1962).

Owing to the large number of parameters for the non-centric space groups it was possible to refine only about one-third of them in any one cycle of leastsquares. Six cycles would thus be necessary to refine all parameters twice, taking care to avoid always refining the same groups of parameters together.

Refinement

It was assumed that the pseudo structure found by Moore \& Taylor (1968) was essentially correct, but that the intercolumn sulphate ions and water groups were wholly or partly ordered as regards positions, and in the former case, orientation. Fig. $1(b)-(d)$ gives some possible arrangements of the intercolumn material for space groups $P \overline{3} 1 c$ and $P 31 c$. If the twists of the tetrahedra and water groups are reduced to zero, the arrangements for space group $P \overline{3} 1 c$ assume the higher symmetry $P \overline{6} 2 c$, and that for $P 31 c$ assumes the symmetry $P 6_{3}$. Of the two possibilities shown for $P \overline{3} 1 c$, that at (b) is improbable because it brings the apices of neighbouring SO_{4}^{2-} tetrahedra too close together. The arrangement shown at (c) was therefore tested. The parameters previously reported for the column material were retained, and for the intercolumn material the coordinates assumed were those given in Table 1. These coordinates are slightly rotated from the positions in the hexagonal pseudo-structure, and were chosen on the basis of preliminary trial structure factor calculations for selected pairs of hkil and hkil reflexions. This gave $R=0 \cdot 24$ for all reflexions, the agreement for the odd layers being poor. A Fourier synthesis indicated a reversion in the direction of the pseudostructure; the space-group $P \overline{3} 1 c$ was therefore abandoned.

Table 1. Coordinates of the intercolumn material for the $P \overline{3} 1 c$ trial structure

	x	y	z
$\mathrm{~S}(1)$	$\frac{1}{3}$	$\frac{2}{3}$	0
$\mathrm{~S}(2)$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{3}{4}$
$\mathrm{O}(13)$	$\frac{3}{3}$	$\frac{\sqrt[3]{3}}{3}$	0.0690
$\mathrm{O}(14)$	$\frac{1}{3}$	$0.60{ }^{\frac{1}{3}}$	0.8190
$\mathrm{O}(15)$	0.1914	0.647	0.2271
$\mathrm{O}(16)$	0.1914	0.6047	0.5229
$\mathrm{O}(17)$	0.1914	0.6047	0.7271

It was therefore decided to investigate space-group $P 31 c$, but to put in SO_{4}^{2-} ions with their apices pointing both up and down at all eight possible positions in the cell [as in Fig. 1(a)], and to allow the least-squares program to refine out the unwanted atoms. The sulphur atoms were initially weighted at unity, which represents an excess of $33 \frac{1}{3} \%$ over the true total sulphur content, and the oxygen atoms were weighted at 0.5 . The coordinates and temperature factors of the atoms in the columns were first refined, giving $R=0 \cdot 20$. The occupancies of the sulphur and oxygen atom sites in between the columns were then refined; in a total of ten cycles it was found that the arrangement was as shown in Fig. 1(d), with $R=0 \cdot 163$. The water groups near $\frac{1}{3}, \frac{2}{3}, \frac{1}{4}$ and $\frac{2}{3}, \frac{1}{3}, \frac{3}{4}$ reduced to a total of six sites with z coordinates not significantly different from 0.25 and 0.75 , and an occupancy of 0.57 per site. A further two cycles of refinement of the coordinates and temperature factors of the atoms in the columns reduced R to 0.134 , and ten cycles of refinement covering all the atoms reduced it to $0 \cdot 115$, or to 0.099 if 60 high-angle unobserved reflexions were discarded. No significant improvement resulted from adoption of anisotropic temperature factors for the calcium atoms or the oxygen atoms of the hydroxyl groups.

A difference Fourier synthesis employing all the reflexions showed no peaks exceeding $\pm 1 \cdot 2$ e. \AA^{-3}. Most of the positive peaks were in positions that could reasonably be assigned to hydrogen atoms, the principal exceptions being either on the triad axes or near to the calcium atom positions. In the cell there are four independent hydrogen atoms of OH groups, 16 belonging to $\mathrm{H}_{2} \mathrm{O}$ molecules in the columns and two (with half occupancy) belonging to the intercolumn water molecules. Insertion of these atoms, at positions based partly on the difference map, and partly on consideration of O-O distances, and refinement of their positions, but not temperature factors (which were fixed at $B=3 \cdot 0$), lowered R from 0.099 to 0.091 . Ten cycles of least-squares refinement of all parameters of all atoms except the hydrogen produced a further reduction to 0.088 . The occupancy of the intercolumn water sites refined to 0.56 ± 0.05. A final difference synthesis showed no peaks higher than $\pm 0.7 \mathrm{e} . \AA^{-3}$ except in the region of the hydroxyl groups, where the limits were $\pm 1 \cdot 1$ e. \AA^{-3}.

To see whether there might still be some disorder between SO_{4}^{2-} tetrahedra and water groups a refine-

Table 2. Observed and calculated structure factors for the final structure
Columns give $k, 10 \times\left|F_{o}\right|, 10 \times\left|F_{c}\right|$, and φ in millicycles.

$\begin{array}{rrr}0 & 290 & 354 \\ 0, \times .14 & 35\end{array}$
$\begin{array}{llll}0 & 190 \\ 100 & 159 & 35 \\ 104 & 117\end{array}$

 \%
:. : On

: $\left.\begin{array}{c}100 \\ 2>2 \\ 20\end{array}\right\}$
, 215 33, 09
$3, \pi,-14$
$100 \quad 106 \quad 900$
$0,4.10$

シャ:

ment was attempted with the groups at $\frac{1}{3}, \frac{2}{3}, \frac{1}{4}$ and $\frac{1}{3}, \frac{2}{3}, \frac{3}{4}$ rearranged. A sulphur atom at $0 \cdot 1$ occupancy was added at $\frac{1}{3}, \frac{2}{3}, \frac{1}{4}$ and the oxygen atoms around this site were duplicated to give a sixfold group with halved occupancy; this would permit two water molecules to occupy sites 180° apart, which would be more satisfactory than occupying two out of three sites 120°
apart. In addition the tetrahedron at $\frac{1}{3}, \frac{2}{3}, \frac{3}{4}$ was reduced to 0.9 occupancy with the oxygen atoms disordered (i.e. the tetrahedron pointing both up and down). These alterations increased R to $0 \cdot 114$, and when occupancies and positions were refined the changes were all such as to restore the ordered arrangement, which was therefore retained.

Table 3. Coordinates (expressed as fractions of the cell edges) and isotropic temperature factors ($B=8 \pi^{2} u$ in \AA^{2}) for the final structure
E.s.d.'s on the last significant figures are in parentheses.

	x	y	z	B
$\mathrm{Al}(1)$	0	0	0.000 (1)	$1 \cdot 2$ (1)
$\mathrm{Al}(2)$	0	0	$0 \cdot 250$ (1)	$1 \cdot 2$ (1)
$\mathrm{Ca}(1)$	0.009 (1)	0.816 (1)	0.875 (1)	$1 \cdot 7$ (1)
$\mathrm{Ca}(2)$	0.994 (1)	$0 \cdot 189$ (1)	$0 \cdot 125$ (1)	$1 \cdot 8$ (1)
O(1)	0.994 (3)	$0 \cdot 134$ (3)	0.948 (1)	$2 \cdot 2$ (5)
$\mathrm{O}(2)$	0.996 (3)	0.865 (2)	0.057 (1)	$1 \cdot 0$ (4)
$\mathrm{O}(3)$ [OH	0.004 (3)	$0 \cdot 146$ (2)	0.805 (1)	$1 \cdot 6$ (4)
$\mathrm{O}(4)$	0.004 (3)	0.876 (2)	$0 \cdot 198$ (1)	$1 \cdot 0$ (4)
O(5)	0.000 (4)	0.348 (3)	0.047 (2)	3.9 (6)
$\mathrm{O}(6)$	0.010 (2)	0.663 (2)	0.958 (1)	$1 \cdot 8$ (4)
O(7)	0.997 (3)	0.345 (3)	$0 \cdot 199$ (1)	$3 \cdot 6$ (6)
$\mathrm{O}(8) \quad \mathrm{H}_{2} \mathrm{O}$	0.996 (3)	0.655 (3)	0.788 (1)	$3 \cdot 1$ (5)
O(9)	$0 \cdot 263$ (3)	0.405 (3)	0.618 (2)	2.9 (6)
$\mathrm{O}(10)$	0.744 (4)	0.593 (4)	0.374 (2)	$4 \cdot 8$ (9)
$\mathrm{O}(11)$	0.259 (3)	0.406 (3)	0.126 (2)	$4 \cdot 8$ (9)
$\mathrm{O}(12)$	0.768 (2)	$0 \cdot 598$ (2)	0.870 (2)	1.7 (5)
$\mathrm{O}(13)$	$\frac{1}{3}$	$\frac{2}{3}$	0.420 (3)	1.9 (9)
$\mathrm{O}(14)$	$\frac{1}{3}$	塞	0.814 (3)	$7 \cdot 8$ (16)
$\mathrm{O}(15) \quad \mathrm{SO}_{4}{ }^{2-}$	$\frac{1}{3}$	$\frac{2}{3}$	0.070 (3)	$4 \cdot 2$ (13)
$\mathrm{O}(16)$	0.195 (3)	0.642 (3)	0.518 (2)	$4 \cdot 7$ (8)
$\mathrm{O}(17)$	$0 \cdot 195$ (3)	$0 \cdot 620$ (3)	0.723 (1)	$4 \cdot 3$ (7)
$\mathrm{O}(18)$	$0 \cdot 192$ (2)	0.585 (2)	0.982 (1)	$2 \cdot 1$ (4)
$\mathrm{O}(19) \quad \mathrm{H}_{2} \mathrm{O}$	$0 \cdot 197$ (5)	0.637 (5)	0.243 (3)	$5 \cdot 4$ (15)
$\mathrm{S}(1)$	$\frac{1}{3}$	${ }^{2}$	0.491 (1)	$2 \cdot 2$ (5)
S(2)	$\frac{1}{3}$	$\frac{3}{3}$	$0 \cdot 750$ (2)	1.6 (2)
S(3)	$\frac{1}{3}$	$\frac{2}{3}$	0.009 (1)	$1 \cdot 4$ (4)

Fig. 2. Projection of the structure on (0001). In general, only atoms in the lower half of the cell are shown; z coordinates are expressed as $1000 \mathrm{z} / \mathrm{c}$. The columns are shaded.

Table 2 gives observed and calculated structure factors, Table 3 gives the corresponding parameters, Fig. 2 shows the structure projected along \mathbf{c}, and Fig. 3 shows the partial structure of one column projected on to ($11 \overline{2} 0$). Hydrogen atoms are omitted from Table 3 and Figs. 2 and 3, because their parameters cannot be considered as more than plausible; a general indication of their proposed positions is given in the next section.

Description of the structure

The results obtained for the occupancy of the sites in the water groups show that the formula of the ettringite crystal studied may be written as

$$
\mathrm{Ca}_{6}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 25 \cdot 7 \mathrm{H}_{2} \mathrm{O}
$$

or

$$
3 \mathrm{CaO} \cdot \mathrm{Al}_{3} \mathrm{O}_{3} \cdot 3 \mathrm{CaSO}_{4} \cdot 31 \cdot 7 \mathrm{H}_{2} \mathrm{O}
$$

This water content need not apply to other specimens, or even to all crystals of the present specimen; as indicated earlier, the occupancy of the sites in the water groups may well be variable.

The parameters of the atoms in the columns show only small changes from those reported by Moore \& Taylor (1968) for the pseudo-structure, and also agree

Fig.3. Part of a single column projected on (11200). For clarity, the water molecules coordinated to calcium ions lying in the central vertical line of the Figure are omitted, as are all hydrogen atoms.
closely with those found by Courtois et al. (1968). The columns are based on lines of $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ octahedra running along $(0,0, z)$, which are linked to each of their neighbours through groups of three Ca^{2+} ions, the coordination polyhedra of which are completed by water molecules. Each Ca^{2+} ion is eight-coordinated, by four $\mathrm{H}_{2} \mathrm{O}$ molecules and four OH^{-}ions; its polyhedron may be described as a trigonal prism with its axis parallel to \mathbf{c} and having two additional apices at approximately the same z coordinate as the Ca^{2+} ion. Each shares two edges with adjacent $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ octahedra. The arrangement of the intercolumn SO_{4}^{2-} ions and $\mathrm{H}_{2} \mathrm{O}$ molecules has already been described, and is shown in Fig. $1(d)$.

Tables 4 and 5 give the more important interatomic distances and bond angles respectively. Within the $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ octahedra, the $\mathrm{Al}-\mathrm{O}$ distances are $1 \cdot 82-$ $2.00 \AA$, the $\mathrm{O}-\mathrm{O}$ distances $2 \cdot 46-2 \cdot 84 \AA$, and $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ angles $84 \cdot 7-95 \cdot 6^{\circ}$. With one exception, the horizontal $\mathrm{O}-\mathrm{O}$ edges are shorter than the others, and the hydrogen atoms of the OH groups possibly form hydrogen bonds along them. However, the final difference synthesis did not support this conclusion, and the extreme shortness $(2.46 \AA)$ of one of the $\mathrm{O}-\mathrm{O}$ distances casts some doubt on the accuracy of the coordinates involved.

Table 4. Interatomic distances (\AA) O-O distances above $2.9 \AA$ are not given.
(a) Within AlO_{6} octahedra ($h=$ horizontal)

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.92
$\mathrm{Al}(1)-\mathrm{O}(2)$	1.92
$\mathrm{Al}(2)-\mathrm{O}(3)$	2.00
$\mathrm{Al}(2)-\mathrm{O}(4)$	1.82
$\mathrm{O}(1)-\mathrm{O}(1)(h)$	2.67
$\mathrm{O}(1)-\mathrm{O}(2)$	2.84
$\mathrm{O}(1)-\mathrm{O}(2)$	2.74
$\mathrm{O}(1)-\mathrm{O}(2)(h)$	2.59
$\mathrm{O}(3)-\mathrm{O}(3)(h)$	2.80
$\mathrm{O}(3)-\mathrm{O}(4)$	2.77
$\mathrm{O}(3)-\mathrm{O}(4)$	2.77
$\mathrm{O}(4)-\mathrm{O}(4)(h)$	2.46

(b) Within CaO_{8} polyhedra

$\mathrm{Ca}(1)-\mathrm{O}(1)$	2.46
$\mathrm{Ca}(1)-\mathrm{O}(1)$	2.46
$\mathrm{Ca}(1)-\mathrm{O}(3)$	2.52
$\mathrm{Ca}(1)-\mathrm{O}(3)$	2.36
$\mathrm{Ca}(1)-\mathrm{O}(6)$	2.48
$\mathrm{Ca}(1)-\mathrm{O}(8)$	2.56
$\mathrm{Ca}(1)-\mathrm{O}(10)$	2.62
$\mathrm{Ca}(1)-\mathrm{O}(12)$	2.60
$\mathrm{Ca}(2)-\mathrm{O}(2)$	2.48
$\mathrm{Ca}(2)-\mathrm{O}(2)$	2.35
$\mathrm{Ca}(2)-\mathrm{O}(4)$	2.46
$\mathrm{Ca}(2)-\mathrm{O}(4)$	2.46
$\mathrm{Ca}(2)-\mathrm{O}(5)$	2.43
$\mathrm{Ca}(2)-\mathrm{O}(7)$	2.36
$\mathrm{Ca}(2)-\mathrm{O}(9)$	2.67
$\mathrm{Ca}(2)-\mathrm{O}(11)$	2.75

(c) Within SO_{4} tetrahedra or water groups

$\mathbf{S}(1)-\mathrm{O}(13)$	1.51
$\mathbf{S}(1)-\mathrm{O}(16)$	1.56
$\mathbf{S}(2)-\mathrm{O}(14)$	1.36

	Table 4 (cont.)
$\mathrm{S}(2)-\mathrm{O}(17)$	1.49
$\mathrm{S}(3)-\mathrm{O}(15)$	$1 \cdot 31$
$\mathrm{S}(3)-\mathrm{O}(18)$	$1 \cdot 48$
$\mathrm{O}(13)-\mathrm{O}(16)$	2.55
$\mathrm{O}(14)-\mathrm{O}(17)$	2.38
$\mathrm{O}(15)-\mathrm{O}(18)$	2.33
$\mathrm{O}(16)-\mathrm{O}(16)$	$2 \cdot 50$
$\mathrm{O}(17)-\mathrm{O}(17)$	$2 \cdot 37$
$\mathrm{O}(18)-\mathrm{O}(18)$	$2 \cdot 39$
$\mathrm{O}(19)-\mathrm{O}(19)$	$2 \cdot 41$
(d) Between different polyhedra	
$\mathrm{O}(5)-\mathrm{O}(18)$	$2 \cdot 82$
$\mathrm{O}(6)-\mathrm{O}(16)$	$2 \cdot 70$
$\mathrm{O}(6)-\mathrm{O}(18)$	2.66
$\mathrm{O}(7)-\mathrm{O}(17)$	2.77
$\mathrm{O}(8)-\mathrm{O}(17)$	$2 \cdot 82$
$\mathrm{O}(8)-\mathrm{O}(19)$	$2 \cdot 50$
$\mathrm{O}(9)-\mathrm{O}(11)$	2.81
$\mathrm{O}(9)-\mathrm{O}(16)$	2.59.
$\mathrm{O}(9)-\mathrm{O}(17)$	2.82

Within the CaO polyhedra, the $\mathrm{Ca}-\mathrm{O}$ distances are $2 \cdot 35-2.75 \AA$. The smallest $\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ angle is 64.7°, and the shortest $\mathrm{O}-\mathrm{O}$ edge, apart from those shared with the $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ octahedra, is $2.91 \AA$. These values are in the normal range. Those water molecules which are at approximately the same z coordinates as the calcium ions to which they are attached $[\mathrm{O}(9)-\mathrm{O}(12)]$ probably have their hydrogen atoms in a vertical plane, while those which are at the vertices of the trigonal prisms $[\mathrm{O}(5)-\mathrm{O}(8)$] probably have them in a horizontal plane. This arrangement, which was well supported by the difference syntheses, permits some hydrogen bonding on to the sulphate ions and intercolumn water molecules. The shortest distance be-
tween the oxygen atoms of the column water molecules and those of the sulphate groups or intercolumn water molecules is $2 \cdot 50 \AA$.

Within the columns, Pauling's second rule is obeyed. It is perhaps reasonable to think of the entire net positive charge of the columns as being distributed, approximately uniformly, among the hydrogen atoms of which their surfaces are composed.

Within the SO_{4}^{2-} groups, the $\mathrm{S}-\mathrm{O}$ distances are 1.31-1.56 \AA, the $\mathrm{O}-\mathrm{O}$ distances $2 \cdot 33-2.55 \AA$, and the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles $105 \cdot 6-113 \cdot 2^{\circ}$. The wide range of the S-O distances casts doubt on the accuracy of the coordinates, the normal value being about $1.49 \AA$ (Wells, 1962). However, it is possibly significant that Courtois et al. (1968) reported the even shorter distance of $1.23 \AA$ for one of the $\mathrm{S}-\mathrm{O}$ bonds lying along the threefold axis.

The distances between the oxygen sites in the intercolumn water groups are also abnormally low ($2 \cdot 41 \AA$). However, the mean occupancy is approximately 1.7 atoms per group of three sites, so that most or all of the groups presumably contain either one or two water molecules. Where two are present, thermal movements could possibly cause these to move cooperatively among all three of the sites in such a way that the mean separation between the atoms is greater than the $2.41 \AA$ separation between the sites.

Crystal with hexagonal symmetry

As was shown by Courtois et al. (1968), the hexagonal symmetry of some crystals might be explained by either twinning or disorder. The latter is perhaps the more probable. Its effect is almost wholly on some of

Table 5. Bond angles
$\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ angles above 115° not given.

$\mathrm{Al}(1)$	$\mathrm{O}(1)-\mathrm{O}(1)$	$88.4{ }^{\circ}$	S(1)	$\mathrm{O}(13)-\mathrm{O}(16)$	$112.5{ }^{\circ}$
	$\mathrm{O}(1)-\mathrm{O}(2)$	$95 \cdot 6$		$\mathrm{O}(16)-\mathrm{O}(16)$	$106 \cdot 3$
	$\mathrm{O}(1)-\mathrm{O}(2)$	91.4			
	$\mathrm{O}(2)-\mathrm{O}(2)$	$84 \cdot 7$	S(2)	$\mathrm{O}(14)-\mathrm{O}(17)$	113.2
				$\mathrm{O}(17)-\mathrm{O}(17)$	$105 \cdot 6$
$\mathrm{Al}(2)$	$\mathrm{O}(3)-\mathrm{O}(3)$	$92 \cdot 9$			
	$\mathrm{O}(3)-\mathrm{O}(4)$	$92 \cdot 9$	S(3)	$\mathrm{O}(15)-\mathrm{O}(18)$	112.3
	$\mathrm{O}(3)-\mathrm{O}(4)$	$92 \cdot 9$		$\mathrm{O}(18)-\mathrm{O}(18)$	$106 \cdot 5$
	$\mathrm{O}(4)-\mathrm{O}(4)$	$85 \cdot 3$			
$\mathrm{Ca}(1)$	$\mathrm{O}(1)-\mathrm{O}(1)$	65.8°	$\mathrm{Ca}(2)$	$\mathrm{O}(2)-\mathrm{O}(2)$	$64.7{ }^{\circ}$
	$\mathrm{O}(1)-\mathrm{O}(3)$	75.9		$\mathrm{O}(2)-\mathrm{O}(4)$	77.9
	$\mathrm{O}(1)-\mathrm{O}(6)$	85.0		$\mathrm{O}(2)-\mathrm{O}(5)$	$90 \cdot 3$
	$\mathrm{O}(1)-\mathrm{O}(6)$	86.6		$\mathrm{O}(2)-\mathrm{O}(5)$	$90 \cdot 1$
	$\mathrm{O}(1)-\mathrm{O}(10)$	$75 \cdot 4$		$\mathrm{O}(2)-\mathrm{O}(9)$	71.4
	$\mathrm{O}(1)-\mathrm{O}(12)$	74.9		$\mathrm{O}(2)-\mathrm{O}(11)$	71.9
	$\mathrm{O}(3)-\mathrm{O}(3)$	$70 \cdot 0$		$\mathrm{O}(4)-\mathrm{O}(4)$	$60 \cdot 0$
	$\mathrm{O}(3)-\mathrm{O}(8)$	84.4		$\mathrm{O}(4)-\mathrm{O}(7)$	74.2
	$\mathrm{O}(3)-\mathrm{O}(8)$	86.0		$\mathrm{O}(4)-\mathrm{O}(7)$	91.3
	$\mathrm{O}(3)-\mathrm{O}(10)$	72.4		$\mathrm{O}(4)-\mathrm{O}(9)$	$77 \cdot 7$
	$\mathrm{O}(3)-\mathrm{O}(12)$	$70 \cdot 0$		$\mathrm{O}(4)-\mathrm{O}(11)$	$73 \cdot 1$
	$\mathrm{O}(6)-\mathrm{O}(8)$	$93 \cdot 0$		$\mathrm{O}(5)-\mathrm{O}(7)$	$86 \cdot 2$
	$\mathrm{O}(6)-\mathrm{O}(10)$	74.7		$\mathrm{O}(5)-\mathrm{O}(9)$	74.7
	$\mathrm{O}(6)-\mathrm{O}(12)$	$75 \cdot 1$		$\mathrm{O}(5)-\mathrm{O}(11)$	$74 \cdot 9$
	$\mathrm{O}(8)-\mathrm{O}(10)$	$76 \cdot 8$		$\mathrm{O}(7)-\mathrm{O}(9)$	$78 \cdot 3$
	$\mathrm{O}(8)-\mathrm{O}(12)$	68.7		$\mathrm{O}(7)-\mathrm{O}(11)$	74:3

$z=\frac{1}{8}$ and $\frac{5}{8}$. Operation by such mirror planes has only a minor effect on the columns, because these already possess pseudo mirror planes at these heights. Its effect on the intercolumn material is shown in Fig. 4; it is to invert groupings of an SO_{4}^{2-} tetrahedron and a water group (marked ' p ' in the Figure), leaving the positions and orientations of the remaining tetrahedra unaffected apart from small changes in the angles of twist around the threefold axis. It is not established whether the effect operates so as to produce irregularities in the sequence of SO_{4}^{2-} tetrahedra and intercolumn water groups along individual channels, or whether it operates on channels as a whole.

The space group $P 6_{3} / m m c$, which has usually been assigned to the hexagonal crystals, is incompatible with the symmetry of the columns and is thus most unlikely to be correct.

We thank Professor C. F. Tilley for provision of material and the Directors ८f the Atlas computer laboratories at Chilton and in the University of London for facilities.

References

Bannister, F. A., Hey, M. H. \& Bernal, J. D. (1936). Miner. Mag. 24, 324.
Bezjak, A. \& Jelenić, I. (1966). Croat. Chim. Acta. 38, 239.
Busing, W. R., Martin, K.). \& Levy, H. A. (1962). USAEC Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Courtois, A., Dusausoy, Y., Laffaille, A. \& Protas, J. (1968). C. R. Acad. Sci. Paris, 266, 1911.

Daly, J. J., Stephens, F. S. \& Wheatley, P. J. (1963). Monsanto Research S. A. Final Report No. 52.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
Moore, A. \& Taylor, H. F. W. (1968). Nature, Lond. 218, 1048.

Wells, A. F. (1962). Structural Inorganic Chemistry, 3rd. ed. p. 57. Oxford Univ. Press.
Welin, E. (1956). Ark. Min. Geol. 2, 137.

